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Abstract

We propose a new unsupervised sentence salience framework
for Multi-Document Summarization (MDS), which can be
divided into two components: latent semantic modeling and
salience estimation. For latent semantic modeling, a neural
generative model called Variational Auto-Encoders (VAEs) is
employed to describe the observed sentences and the corre-
sponding latent semantic representations. Neural variational
inference is used for the posterior inference of the latent vari-
ables. For salience estimation, we propose an unsupervised
data reconstruction framework, which jointly considers the
reconstruction for latent semantic space and observed term
vector space. Therefore, we can capture the salience of sen-
tences from these two different and complementary vector
spaces. Thereafter, the VAEs-based latent semantic model is
integrated into the sentence salience estimation component in
a unified fashion, and the whole framework can be trained
jointly by back-propagation via multi-task learning. Exper-
imental results on the benchmark datasets DUC and TAC
show that our framework achieves better performance than
the state-of-the-art models.

Introduction

Multi-Document Summarization (MDS), aiming at auto-
matically generating a brief, well-organized summary for
a topic which describes an event with a set of documents
from different sources, has been studied extensively. (Gold-
stein et al. 2000; Erkan and Radev 2004; Wan, Yang, and
Xiao 2007; Nenkova and McKeown 2012; Min, Chew, and
Tan 2012; Bing et al. 2015). Summarization approaches can
be grouped into two classes: extraction-based methods and
abstraction-based methods. For both classes, salience esti-
mation plays a critical role in improving the performance.
Considering the scalability restriction of labeling MDS
datasets, some works adopt unsupervised data reconstruc-
tion methods to conduct salience estimation and achieve
comparable results (He et al. 2012; Liu, Yu, and Deng 2015;
Yao, Wan, and Xiao 2015; Li et al. 2015; Ren et al. 2016;
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Song et al. 2017). After investigating these works, we ob-
serve that they mainly use Bag-of-Words (BoWs) vectors in
sentence representation and reconstruction loss function. On
the other hand, some research works (Le and Mikolov 2014;
Kim 2014) have demonstrated that distributed representa-
tions outperform BoWs in modeling sentence and document
semantics. In this paper, instead of using BoWs vectors, we
explore a distributed representation for modeling the latent
semantics of sentences for the MDS task. We propose a
framework based on probabilistic generative models to de-
scribe the observed sentences and latent semantic vectors.

Given a topic (event) composed of a set of documents,
we build a distributed latent semantic vector to model
each sentence with a generative framework, where each
sentence is generated from an unobserved latent seman-
tic space. Another characteristic is that the generative pro-
cess employs a neural network conditioned on the input
text approximating the distributions over the latent seman-
tic vector. Markov Chain Monte Carlo (MCMC) sampling
and Variational Inference (VI) are the most common meth-
ods used in generative models (Jordan et al. 1999; Wain-
wright and Jordan 2008; Blei, Kucukelbir, and McAuliffe
2016). Nevertheless, some integrals of the marginal likeli-
hood are intractable due to the continuous latent variables
and neural network based generative modeling. Standard
variational inference methods such as mean-field algorithms
(Xing, Jordan, and Russell 2002) cannot be used. More-
over, MCMC based sampling methods are too slow to ex-
tend to large-scale machine learning tasks. Recently, Vari-
ational Autoencoders (VAEs) (Kingma and Welling 2014;
Rezende, Mohamed, and Wierstra 2014) and Generative
Adversarial Networks (GANs) (Goodfellow et al. 2014;
Radford, Metz, and Chintala 2015) have been proposed
that can handle the inference problem associated with com-
plex generative modeling frameworks. In our work, we
employ VAEs as the basic framework for the generative
model. In fact, some works (Miao, Yu, and Blunsom 2015;
Chung et al. 2015) have demonstrated that VAEs outperform
the general Recurrent Neural Networks (RNN) and Convo-
lutional Neural Networks (CNN) in generating high-level
semantic representations.

To address the sentence salience estimation problem
for MDS, we propose an unsupervised data reconstruction
framework which jointly reconstructs the latent semantic
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space and the observed term vector space. The basic idea
behind the data reconstruction is that each original sen-
tence can be reconstructed using a linear combination of
several other representative sentences. These representative
sentences are able to capture different aspects implied in the
event, such as “what happened”, “damages”, “countermea-
sures”, etc. We name the vectors which are used to repre-
sent the aspect sentences as aspect vectors. Then, salience
estimation can be conducted during the reconstruction pro-
cess using aspect vectors. Based on the spirit of generative
model and data reconstruction process, we design several la-
tent aspect vectors and use them to reconstruct the whole
original latent semantic space. In parallel with such idea,
we also design some aspect term vectors which are used to
reconstruct the original observed term vector space. There-
after, the VAEs-based latent semantic model is integrated
into the sentence salience estimation component in a uni-
fied fashion, and the whole framework can be trained jointly
by back-propagation via multi-task learning. After estimat-
ing the sentence salience, we employ a phrase merging based
unified optimization framework to generate a final summary.

Our contributions are as follows: (1) We propose a VAEs-
based generative model to conduct the latent semantic mod-
eling for sentences. To the best of our knowledge, there is
no other work exploring the use of VAEs for summariza-
tion related tasks. (2) In our framework, salience estima-
tion is conducted by jointly considering the latent semantic
space and the observed input term vector space, which can
draw richer information from these two different and com-
plementary spaces. (3) The VAEs-based generative model
and salience estimation component are integrated into a uni-
fied framework, which can be trained simultaneously in a
multi-task learning fashion using back-propagation. (4) Ex-
perimental results on the benchmark data sets DUC and TAC
show that our framework achieves better performance than
the state-of-the-art models.

Overview of Our Proposed Framework

As shown in Figure 1, our sentence salience framework has
two main components: (1) latent semantic modeling; (2)
salience estimation. To tackle the latent semantic model-
ing problem, a VAEs-based generative model is designed to
project sentences from the term vector space to the latent
semantic space. Consider a dataset X = {x1,x2, · · · ,xn}
consisting of n sentences from all the documents in a topic
(event), represented by BoWs term vectors. The left part of
Figure 1 illustrates a VAEs-based component implemented
as a feed-forward neural network for associating a latent se-
mantic vector zi ∈ R

K with each sentence xi ∈ R
|V |,

where V is the term dictionary. Based on generative mod-
eling, a latent semantic vector zi ∈ R

K is generated from
some prior distribution pθ(z

i). Then the sentence term vec-
tor xi is generated from a conditional distribution pθ(x

i|zi).
To find the parameter θ, the reparameterization trick is ap-
plied to obtain a differentiable estimator of the variational
lower bound. Then back-propagation can be employed to
train the neural network. For sentence salience estimation,
we propose VAEs-A, an unsupervised data reconstruction

framework with the alignment mechanism for aspect vector
discovery. The general idea is shown in the right part of Fig-
ure 1. Note that {x1,x2, · · · ,xn} and {z1, z2, · · · , zn} are
exactly the same vectors as those depicted in the left part
of Figure 1. We design some latent aspect vectors Sz for
capturing the latent aspect information of a topic. The corre-
sponding aspect term vectors Sx are generated according to
the conditional distribution pθ(x|z). By reconstructing the
original sentence term vectors X and the corresponding la-
tent semantic vectors Z using Sx and Sz jointly, the sentence
salience can be estimated from the optimized coefficient ma-
trix. Finally, inspired by (Bing et al. 2015), a phrase-based
unified numerical optimization framework is employed to
conduct the summary generation.

Sentence Salience Framework

Latent Semantic Modeling

VAEs-based latent semantic modeling can be viewed as an
instance of unsupervised learning, which can be divided
into two parts: inference (variational-encoder) and genera-
tion (variational-decoder). Recall that the dictionary is V .
As shown in the left part of Figure 1, for each sentence term
vector x ∈ R

|V |, the variational-encoder can map it to a la-
tent semantic vector z ∈ R

K , which can be used to generate
the original sentence term vector via the variational-decoder
component. The target is to maximize the probability of each
x in the dataset based on the generation process according
to:

pθ(x) =

∫
pθ(x|z)pθ(z)dz (1)

For the purpose of solving the intractable integral of the
marginal likelihood as shown in Equation 1, a recognition
model qφ(z|x) is introduced as the approximation to the in-
tractable of true posterior pθ(z|x). It is obvious that qφ(z|x)
and pθ(x|z) can be regarded as a probabilistic encoder and
decoder respectively. The recognition model parameters φ
and the generative model parameters θ can be learnt jointly.
The aim is to reduce the Kulllback-Leibler divergence (KL)
between qφ(z|x) and pθ(z|x):
DKL[qϕ(z|x)‖pθ(z|x)] =

∫
z

qϕ(z|x) log qϕ(z|x)
pθ(z|x)dz

= Eqϕ(z|x)[log qϕ(z|x)− log pθ(z|x)]
(2)

By applying Bayes rule to pθ(z|x):
DKL[qϕ(z|x)‖pθ(z|x)] = log pθ(x) +

Eqϕ(z|x)[log qϕ(z|x)− log pθ(x|z)− log pθ(z)]
(3)

We can extract log pθ(x) from the expectation, transfer the
expectation term Eqϕ(z|x) back to KL-divergence, and rear-
range all the terms. Then we yield:

log pθ(x) = DKL[qϕ(z|x)‖pθ(z|x)]
+ Eqϕ(z|x)[log pθ(x|z)]
−DKL[qϕ(z|x)‖pθ(z)]

(4)

Let L(θ, ϕ;x) represent the last two terms from the right
part of Equation 4:
L(θ, ϕ;x) = Eqϕ(z|x)[log pθ(x|z)]−DKL[qϕ(z|x)‖pθ(z)]

(5)
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Figure 1: Our proposed sentence salience framework. Left: Latent semantic modeling via variation auto-encoders for sentence
xi. Right: Salience estimation by a data reconstruction method during the variation-decoding process. x is the sentence term
vector, and z is the corresponding latent semantic vector. Sz are the latent aspect vectors. Sh and Sx are hidden vectors and the
output aspect term vectors. Mh and Mx are two memories used to refine Sh and Sx based on the neural alignment mechanism.
A is a reconstruction coefficient matrix which contains the sentence salience information.

Because the first KL-divergence term of Equation 4 is non-
negative, so we have log pθ(x) ≥ L(θ, ϕ;x), which means
that L(θ, ϕ;x) is a lower bound (the objective to be maxi-
mized) on the marginal likelihood. In order to differentiate
and optimize the lower bound L(θ, ϕ;x), following the core
idea of VAEs, we use a neural network framework for the
probabilistic encoder qφ(z|x) for better approximation.

Similar to previous works (Kingma and Welling 2014;
Rezende, Mohamed, and Wierstra 2014; Gregor et al. 2015),
we assume that both the prior and posterior of the latent vari-
ables are Gaussian, i.e., pθ(z) = N (0, I) and qφ(z|x) =
N (z;μ,σ2I), where μ and σ denote the variational mean
and standard deviation respectively, which can be calculated
with a multilayer perceptron (MLP). Precisely, given the
term vector representation of an input sentence x, we first
project it to a hidden space:

henc = relu(Wxhx+ bxh) (6)

where henc ∈ R
dh , Wxh and bxh are the neural parameters.

relu(x) = max(0, x) is the activation function.
Then the Gaussian parameters μ ∈ R

K and σ ∈ R
K can

be obtained via a linear transformation based on henc:

μ = Whμhenc + bhμ
log(σ2) = Whσhenc + bhσ

(7)

The latent semantic vector z ∈ R
K can be calculated using

the reparameterization trick:

ε ∼ N (0, I), z = μ+ σ ⊗ ε (8)

where ε ∈ R
K is an auxiliary noise variable. It is obvious

that the mapping from x to z is similar with the process of
general auto-encoder. Therefore this process can be named
variational-encoding process.

Given the latent semantic vector z, a new term vector x′ is
generated via the conditional distribution pθ(x|z). Under the
neural network framework, the generation process is sim-
ilar with the decoding process of the typical auto-encoder
model:

hdec = relu(Wzhz + bzh) (9)
x′ = sigmoid(Whxhdec + bhx) (10)

Finally, based on the reparameterization trick in Equa-
tion 8, we can get the analytical representation of the varia-
tional lower bound L(θ, ϕ;x):

log p(x|z) =
|V |∑
i=1

xi log x
′
i + (1− xi) · log(1− x′

i)

−DKL[qϕ(z|x)‖pθ(z)]= 1
2

K∑
i=1

(1 + log(σ2
i )− μ2

i − σ2
i )

In this work we let pθ(x|z) be a multivariate Bernoulli.
All the parameters {W,b} can be learnt using the back-
propagation method.

Salience Estimation

The right part of Figure 1 depicts the general framework for
salience estimation. Note that xi and zi are the same vectors
as those in the left part of Figure 1. Considering the spirit
of summarization, we design a set of latent aspect vectors
Sz from the latent space which can be regarded as the rep-
resentatives of the whole semantic space. Inspired by pre-
vious works (He et al. 2012; Yao, Wan, and Xiao 2015;
Li et al. 2015; Ren et al. 2016), we propose an unsuper-
vised data reconstruction framework, named VAEs-A, for
sentence salience estimation. The main idea is to jointly con-
sider the reconstruction for latent semantic space and ob-
served term vector space. This framework can capture the
salience of sentences from these two different and comple-
mentary vector spaces.
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VAEs-A Assume that Sz = {s1z, s2z, · · · , smz } are m latent
aspect vectors used for reconstructing all the latent seman-
tic vectors Z = {z1, z2, · · · , zn}, and m � n. Recall that
n is the number of original sentences. Here, we do not use
the standard probabilistic sampling methods, instead we pro-
pose a more efficient and straightforward estimation method
based on a neural network, which can be trained using back-
propagation. More specifically, Sz is initialized using val-
ues from [-0.1, 0.1] randomly. Thereafter, the variational-
decoding progress of VAEs can map the latent aspect vector
Sz to Sh, and then produce m new aspect term vectors Sx:

sh = relu(Wzhsz + bzh) (11)
sx = sigmoid(Whxsh + bhx) (12)

where the neural parameters W and b are shared from the
decoder of VAEs.

Although VAEs are able to generate high-level abstract
latent semantic representations for sentences, they may not
be sufficient for generating high-quality sentence term vec-
tors. The top-down generating process may lose detailed in-
formation (Li, Zhu, and Zhang 2016). In order to address
this problem and to estimate the sentence salience more pre-
cisely, we add an alignment mechanism (Bahdanau, Cho,
and Bengio 2015; Luong, Pham, and Manning 2015) to the
decoding hidden layer and output layer respectively. The
purpose of the alignment mechanism is to recall the lost
detailed information from the sentence term vector mem-
ory Mx = {x1,x2, · · · ,xn} and the encoder hidden state
memory Mh = {h1

enc,h
2
enc, · · · ,hn

enc}.
For each decoder hidden state sih, we align it with each

encoder hidden state hj
enc ∈ Mh by an alignment vector

ah ∈ R
n. ahi,j is derived by comparing sih with each input

sentence hidden state hi
enc:

ahi,j =
exp(ehi,j)∑
j′ exp(e

h
i,j′ )

ehi,j = vTha tanh(Whah
j
enc + Uhas

i
h)

(13)

The alignment vector ahi,j captures much more detailed in-
formation from the source hidden space when generating the
new representations. Based on the alignment vectors {ahi,j},
we can create a context vector cih by linearly blending the
sentence hidden states hj′

enc:

cih =
∑

j′
ahi,j′h

j′
enc (14)

Then the output hidden state can be updated based on the
context vector:

s̃ih = tanh(Wh
chc

i
h +W a

hhs
i
h) (15)

And a temporal output vector is generated according to:
s̃ix = sigmoid(Whxs̃

i
h + bhx) (16)

Besides the alignment mechanism on the hidden layer, we
also directly add alignment on the output layer, which can
capture more nuanced and subtle difference information
from the BoWs term vector space. The alignment is con-
ducted by comparing s̃ix with each observed term vector
xj ∈ Mx:

axi,j =
exp(exi,j)∑
j′ exp(e

x
i,j′ )

exi,j = s̃ix · xj
(17)

where · in the inner product operation. Then the output con-
text vector is computed as:

cix =
∑

j
axi,jx

j (18)

To update the output vector, we develop a different method
from that of the hidden alignments. Specifically we use a
weighted combination of the context vectors and the original
outputs with ωa ∈ [0, 1]:

six = ωac
i
x + (1− ωa)s̃

i
x (19)

Intuitively, Sz , Sh, and Sx can be used to reconstruct the
space to which they belong respectively. Let A ∈ R

n×m be
the reconstruction coefficient matrix. Specifically, we do not
create the new variable A here. Instead, we represent it using
the decoder output layer alignment matrix A = {axi,j}, then
refine it during optimization. We define the magnitude of
each row of A as the salience scores for the corresponding
sentences.

The optimization objective contains three reconstruction
terms, jointly considering the latent semantic reconstruction
and the term vector space reconstruction:
LA = λz ‖Z −ASz‖+ λh ‖H −ASh‖+ λx ‖X −ASx‖
This objective is integrated with the variational lower bound
of VAEs and optimized in a multi-task learning fashion.

VAEs-Zero We also investigate a simpler VAEs-based
model named VAEs-Zero which can also conduct salience
estimation. Recall the reparameterization trick, the prior and
posterior of the latent semantic vector z are both from Gaus-
sian, and the vectors drawn from the zero mean will hold
larger probability density. Based on this idea, we can gener-
ate a term vector sx ∈ R

|V | from a special latent semantic
vector sz = 0 via the variational-decoding process. Intu-
itively, sx contains richer information than the other vec-
tors, which should be distilled as the summary information.
Therefore, we assume that sentences which are more sim-
ilar with sx hold larger salience values. For each sentence
xi ∈ X, we use the cosine similarity as the salience estima-
tion:

ai =
xi · sx

‖xi‖ ‖sx‖ (20)

Interestingly, sx can also be treated as the word salience in-
formation, so it can be employed to conduct the keyword
extraction task.

Multi-Task Learning

As mentioned before, we integrate VAEs-based latent se-
mantic modeling and salience estimation into a unified
framework. Then the new optimization objective is:

J = min
Θ

(−L(θ, ϕ;x)+λLsalience) (21)

where Θ is a set of all the parameters related to this task.
Lsalience is the reconstruction loss function for VAEs-A
or VAEs-Zero. The whole framework can be trained using
back-propagation efficiently. After the training, we calcu-
late the magnitude of each row of A as the salience score
for each corresponding sentence, which will be fed into a
phrase-based optimization framework to generate a sum-
mary.
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Summary Generation
Inspired by the phrase-based model in Bing et al. (2015) and
Li et al. (2015), we refine this model to consider the salience
information obtained by our VAEs-based salience estima-
tion framework. Based on the parsed constituency tree for
each input sentence, we extract the noun-phrases (NPs) and
verb-phrases (VPs). The salience Si of a phrase Pi is defined
as:

Si = {
∑
t∈Pi

tf(t)/
∑

t∈Topic

tf(t)} × ai, (22)

where ai is the salience of the sentence containing Pi; tf(t)
be the frequency of the concept t (unigram/bigram) in the
whole topic. Thus, Si inherits the salience of its sentence,
and also considers the importance of its concepts.

The overall objective function of this optimization formu-
lation for selecting salient NPs and VPs is formulated as an
integer linear programming (ILP) problem:

max{
∑
i

αiS
N
i −

∑
i<j

αij(S
N
i + SN

j )RN
ij

+
∑
i

βiS
V
i −

∑
i<j

βij(S
V
i + SV

j )RV
ij}

(23)

where αi and βi are selection indicators for the NP Ni and
the VP Vi, respectively. SN

i and SV
i are the salience scores

of Ni and Vi. αij and βij are co-occurrence indicators of
pairs (Ni, Nj) and (Vi, Vj). RN

ij and RV
ij are the similarity of

pairs (Ni, Nj) and (Vi, Vj). The similarity is calculated by
the Jaccard Index based method. Specifically, this objective
maximizes the salience score of the selected phrases, and
penalizes the selection of similar phrase pairs.

In order to obtain coherent summaries with good read-
ability, we add some constraints into the ILP framework,
such as phrase co-occurrence constraint which control the
co-occurrence relation of NPs or VPs: For NPs, we intro-
duce three constraints:

αij − αi ≤ 0, (24)
αij − αj ≤ 0, (25)

αi + αj − αij ≤ 1. (26)
Constraints 24 to 26 ensure a valid solution of NP selection.
The first two constraints state that if the units Ni and Nj

co-occur in the summary (i.e., αij = 1), then we have to
include them individually (i.e., αi = 1 and αj = 1). The
third constraint is the inverse of the first two. Similarly, the
constraints for VPs are as follows:

βij − βi ≤ 0, (27)
βij − βj ≤ 0, (28)

βi + βj − βij ≤ 1. (29)
Other constraints include sentence number, summary length,
phrase co-occurrence, etc. For details, please refer to Wood-
send and Lapata (2012), Bing et al. (2015), and Li et al.
(2015). The objective function and constraints are linear.
Therefore the optimization can be solved by existing ILP
solvers such as simplex algorithms (Dantzig and Thapa
2006). In the implementation, we use a package called
lp solve1.

1http://lpsolve.sourceforge.net/5.5/

Table 1: Results on DUC 2006.

System Rouge-1 Rouge-2 Rouge-SU4

Random 0.280 0.046 0.088
Lead 0.308 0.048 0.087
MDS-Sparse 0.340 0.052 0.107
DSDR 0.377 0.073 0.117
RA-MDS 0.391 0.081 0.136
ABS-Phrase 0.392 0.082 0.137
VAEs-Zero 0.382 0.080 0.135
VAEs-A 0.396 0.089 0.143

Table 2: Results on DUC 2007.

System Rouge-1 Rouge-2 Rouge-SU4

Random 0.302 0.046 0.088
Lead 0.312 0.058 0.102
MDS-Sparse 0.353 0.055 0.112
DSDR 0.398 0.087 0.137
RA-MDS 0.408 0.097 0.150
ABS-Phrase 0.419 0.103 0.156
VAEs-Zero 0.416 0.106 0.158
VAEs-A 0.421 0.110 0.164

Table 3: Results on TAC 2011.

System Rouge-1 Rouge-2 Rouge-SU4

Random 0.303 0.045 0.090
Lead 0.315 0.071 0.103
PKUTM 0.396 0.113 0.148
RA-MDS 0.400 0.117 0.151
ABS-Phrase 0.393 0.117 0.148
VAEs-Zero 0.388 0.113 0.145
VAEs-A 0.405 0.122 0.155

Experiments and Results

Datasets

The standard MDS datasets from DUC and TAC are used in
our experiments. DUC 2006 and DUC 2007 contain 50 and
45 topics respectively. Each topic has 25 news documents
and 4 model summaries. The length of the model summary
is limited to 250 words. TAC 2011 is the latest standard
summarization benchmark data set and it contains 44 top-
ics. Each topic contains 10 related news documents and 4
model summaries. TAC 2010 is used as the parameter tun-
ing data set of our TAC evaluation. The length of the model
summary is limited to 100 words.

Evaluation Metric

We use ROUGE score as our evaluation metric (Lin 2004)
with standard options2. F-measures of ROUGE-1, ROUGE-
2 and ROUGE-SU4 are reported.

Settings

For text processing, the input sentences are represented as
BoWs vectors with dimension |V |. The dictionary V is cre-

2ROUGE-1.5.5.pl -n 4 -w 1.2 -m -2 4 -u -c 95 -r 1000 -f A -p
0.5 -t 0
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Table 4: Top-10 terms extracted from each topic according
to the output of VAEs-A

Topic 1 Topic 2 Topic 3

Roberts China food
amish earthquake recall

girl Sichuan pet
school province cat
Miller tuesday dog
family million company
child relief menu
police people sell

kill government product

ated using unigrams, bigrams and named entity terms. n
is the number of sentences in all the documents of a topic
(event). For the number of aspects, we let m = 5. For the
neural network framework, we set the hidden size dh = 500
and the latent size K = 100. For the optimization objec-
tive, we let λz = 1, λh = 400, λx = 800, and λ = 1.
Adam (Kingma and Ba 2014) is used for gradient based op-
timization with a learning rate 0.001. Our neural network
based framework is implemented using Theano (Bastien et
al. 2012) on a single GPU3.

Results and Discussions

To compare the performance of our framework with previ-
ous methods, our first priority is to get the summaries pro-
duced by their systems (or get their code to produce sum-
maries by ourselves). Then we run ROUGE evaluation on
them with the same option.

We compare our system with several summarization base-
lines and existing unsupervised methods. Random base-
line selects sentences randomly for each topic. Lead base-
line (Wasson 1998) ranks the news chronologically and ex-
tracts the leading sentences one by one. Three other unsuper-
vised existing methods based on sparse coding are also com-
pared, namely, DSDR (He et al. 2012), MDS-Sparse (Liu,
Yu, and Deng 2015), and RA-MDS (Li et al. 2015). ABS-
Phrase (Bing et al. 2015) generates abstractive summaries
using phrase-based optimization framework with weighted
term frequency as salience estimation. Moreover, we would
like to mention that SpOpt (Yao, Wan, and Xiao 2015) also
presents some good results in their paper, however, it is dif-
ficult to rebuild their system to faithfully reproduce their re-
sults.

As shown in Table 1 and Table 2, our system achieves
the best results on all the ROUGE metrics. It demonstrates
that VAEs based latent semantic modeling and jointly se-
mantic space reconstruction can improve the MDS perfor-
mance considerably. It is worth to note that VAEs-Zero
also achieves comparable performance. Although it is not as
good as VAEs-A, it is better than most of the existing meth-
ods. Therefore, VAEs based latent semantic modeling can
benefit the MDS performance. Besides those unsupervised
models, to our knowledge, the method presented in Wang

3Tesla K80, 1 Kepler GK210 is used, 2496 Cuda cores, 12G
GDDR5 memory.

et al. (2013) achieved the best performance on DUC 2007.
The reason is that it uses supervised learning framework to
train the sentence compression and document summariza-
tion models. In the evaluation, it provides two supervised
learning based sentence selection methods: Support Vector
Regression (SVR) and LambdaMART. SVR obtains 0.095
and 0.147 on Rouge-2 and Rouge-SU4 respectively. Lamb-
daMART obtains 0.123 and 0.156. Our framework, which is
unsupervised, outperforms SVR and achieves similar results
compared with LambdaMART.

For the data set TAC 2011, besides the above mentioned
baselines, we compare our framework with several more
top systems: PKUTM (Li et al. 2011) employs manifold-
ranking for sentence scoring and selection; Table 3 shows
that our performance is better than both PKUTM. It is worth
noting that PKUTM used a Wikipedia corpus for providing
domain knowledge. The method SWING (Min, Chew, and
Tan 2012) is the best TAC 2011 system. However, our results
are not as good as SWING. The reason is that SWING uses
category-specific features and trains the feature weights with
the category information of TAC 2010 data in a supervised
manner. These features help them select better category-
specific content for the summary. In contrast, our model is
unsupervised, and we only use TAC 2010 for general pa-
rameter tuning purpose.

We mention that Sz and Sx represent different aspects of
an event. To validate this idea, we take the topic “Pet Food
Recall” in TAC 2011 and extract some keywords from each
aspect. Aspect-1 contains words “Nutro, purchase, dozen,
drop, 60, timing, protein, research”, Aspect-2 is “Sarah, Tu-
ite, source, protein, Food, and, Drug Administration”, and
Aspect-3 is “food, company, recall, pet, menu, cat, prod-
uct, foods, dog”. It demonstrates that our framework is able
to capture the main aspects of a topic. Moreover, we find
that the magnitude of Sx can represent the word salience
information. We select 3 topics from TAC 2011: “Amish
Shooting”, “Earthquake Sichuan”, and “Pet Food Recall”.
For each topic, we sort the dictionary terms according to
their salience scores, and extract the top-10 terms, as shown
in Table 4. We can see that the top-10 terms reveal the most
important information of each topic. For the topic “Amish
Shooting”, we notice a sentence from the golden summary:
“On October 2, 2006, a gunman, Charles Roberts, entered an
Amish school near Lancaster, PA, took the children hostage,
killed five girls and wounded seven other children before
killing himself.” It is obvious that the top-10 terms can cap-
ture the main semantics.

Conclusions
We propose an new unsupervised Multi-Document Summa-
rization (MDS) framework. First, a VAEs based generative
model is employed to map the sentence from term vector
space to latent semantic space. Then an unsupervised data
reconstruction model is proposed to conduct salience esti-
mation, by jointly reconstructing latent semantic space and
observed term vector space using aspect related vectors. Ex-
perimental results on the benchmark data sets DUC and TAC
show that our framework achieves better performance than
the state-of-the-art models.
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